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Project Context 
•  Implement Initial Integration of GF into Be Informed 
• Goal:  
•  Show complete cycle of Ontology -> AST -> Linearization 
•  In Be Informed Product using SDK 
•  Based on Java GF Runtime 

•  Risk reduction in project plan:  
•  Proof integration early to identify tech issues 
•  Without being functionally complete or have complete grammars 

•  In DoW as Milestone 12.1 

•  After being trained in GF in Apeldoorn 
•  Performed independent of 
•  Drafting of Requirement Document D12.1 
• Grammar Engineering for 4 Be Informed Domains 



Approach 
•  Develop GF based explanation in parallel to our existing 

explanation service 
•  Run in parallel for evaluation 
• Migrate when mature 
•  Keep old implementation for unsupported languages 

•  Use the grammar modularization approach developed in 
WP12 as published in CNL 2012 paper 

•  Use the Tbox grammars as developed for the CNL paper 
‘as is’, integration focuses on ABox 
•  No complete coverage of our meta models yet 
•  Some of its features rely on lemon markup, which is not used in this 

iteration 



Components Developed 
•  Naive GF Abox Grammar Export 
•  Create an Abox Grammar, without using lexical markup 
•  Follows grammar patterns in CNL 2012 paper 
•  Based on existing Be Informed Model to OWL/SKOS Export 

•  GF Based Explanation Engine 
•  Embed GF Java Library in OSGi Bundle, implementing 

ExplainService interface in Be Informed’s SDK 
•  Construct AST’s from Explainable interface 
•  Serialize AST’s using Java Runtime 

•  Not all components using explanation anticipate 
alternative implementations being available in parallel 
•  Patches needed here 
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Result: GF linearization alongside existing 



Conclusions 
•  Integration was succesful 

•  Issues encountered to follow up in the project 
•  Java Runtime Interface for AST linearization 
•  Crafting AST manually instead of by parsing is undocumented 
•  Format used to encode AST’s is not consistent with AST syntax in other 

GF tooling 

•  In-tool GF compilation not supported by Java Runtime 
•  Could we use Eclipse Plugin’s infrastructure to allow in Studio GF 

compilation using GF Shell on model change? 
•  Requires isolation of GF Abstraction in that plugin maybe? 

•  Legal: Java Libarry is LGPL, GF Shell is GPL 
•  Is in-process invocation of GF Shell allowed per license? 


