
Integration of GF into
Be Informed

Jeroen van Grondelle
Herko ter Horst
Xander UIterlinden

Project Context
•  Implement Initial Integration of GF into Be Informed
• Goal:
•  Show complete cycle of Ontology -> AST -> Linearization
•  In Be Informed Product using SDK
•  Based on Java GF Runtime

•  Risk reduction in project plan:
•  Proof integration early to identify tech issues
•  Without being functionally complete or have complete grammars

•  In DoW as Milestone 12.1

•  After being trained in GF in Apeldoorn
•  Performed independent of
•  Drafting of Requirement Document D12.1
• Grammar Engineering for 4 Be Informed Domains

Approach
•  Develop GF based explanation in parallel to our existing

explanation service
•  Run in parallel for evaluation
• Migrate when mature
•  Keep old implementation for unsupported languages

•  Use the grammar modularization approach developed in
WP12 as published in CNL 2012 paper

•  Use the Tbox grammars as developed for the CNL paper
‘as is’, integration focuses on ABox
•  No complete coverage of our meta models yet
•  Some of its features rely on lemon markup, which is not used in this

iteration

Components Developed
•  Naive GF Abox Grammar Export
•  Create an Abox Grammar, without using lexical markup
•  Follows grammar patterns in CNL 2012 paper
•  Based on existing Be Informed Model to OWL/SKOS Export

•  GF Based Explanation Engine
•  Embed GF Java Library in OSGi Bundle, implementing

ExplainService interface in Be Informed’s SDK
•  Construct AST’s from Explainable interface
•  Serialize AST’s using Java Runtime

•  Not all components using explanation anticipate
alternative implementations being available in parallel
•  Patches needed here

Component Model

OWL Export
with SKOS

Labels

Export
Naive ABox
Grammar

Export

Service
Adapter

GF ABox
Grammars

adapts GF Explain
Service

Resource
Adapter

Explainable

Ontology
Contributor

.gfexplain

creates
adapts

Be Informed
Model

Resource
Adapter

discovers

JPGF
Runtime

Library

requires

explain(Explainable)
ExplainService

Verbalization
Client

GF TBox
Grammars
from CNL

Paper

Bundle Boundaries

Existing
Component

OWL to
Abstract

ABox
XSLT OWL to

Concrete
ABox
XSLT

Result: GF linearization alongside existing

Conclusions
•  Integration was succesful

•  Issues encountered to follow up in the project
•  Java Runtime Interface for AST linearization
•  Crafting AST manually instead of by parsing is undocumented
•  Format used to encode AST’s is not consistent with AST syntax in other

GF tooling

•  In-tool GF compilation not supported by Java Runtime
•  Could we use Eclipse Plugin’s infrastructure to allow in Studio GF

compilation using GF Shell on model change?
•  Requires isolation of GF Abstraction in that plugin maybe?

•  Legal: Java Libarry is LGPL, GF Shell is GPL
•  Is in-process invocation of GF Shell allowed per license?

